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This paper reports an inquiry into approaches to grapbing required in Physics and 
Applicable Mathematics tertiary entrance examinations (TEE), in Westem Australia. The 
focus in the paper is on the different graphing practices in Physics and Applicable 
Mathematics in relation to gradient and transformed data, and in regard to use of graphics 
calculators. The differences mediate against transfer between the subjects and are one 
explanation for students' poor performance in graphing in the Physics TEE. 

Introduction 
Candidates have always encountered difficulty with graphical questions (Examiners' report, 1995). 
Candidates have always had problems with graphical questions, and it was not any different this year 
(Examiners'report, 1998). 

Examiners' comments like the above are common in relation to Physics Tertiary 
Entrance Examinations (TEE) in Western Australia and they prompted me to investigate if 
there was disjuncture between graphing practices in mathematics at the secondary level and 
those called on in the Physics TEE. By graphing practices, I mean actions associated with 
the production and interpretation of graphs. This paper reports selected findings of the 
inquiry, which is ongoing. 

Assumptions of situated cognition theory underpin the analysis. Literature that I drew 
on included Cobb and Bowers (1999) critical comparison of various situated views and 
Wenger's (1998) formulation of learning within communities of practice. Literature on 
graphing as social practice (e.g., Roth & McGinn, 1997; Roth & Bowen, 2001) also 
informed the analysis. 

Inquiry showed there is high call on gradient in solving Physics TEE questions. 
Gradient as 'continuous rate of change' and 'ratio' need to be brought to bear, where 
regularly (a) gradient is defined algebraically in terms of multiple parameters, (b) graphs 
involve transformed data and (c) values for calculating gradient need to be read off graphs. 
In secondary-school mathematics in Western Australia, the use of multiple parameters is 
uncommon and students have limited exposure to transforming data. Use of gradient, 
multiple parameters and the transformation of data are the foci of the paper. 

The issue of students' apparent failure with graphing in the Physics TEE is 
significant, for graphical questions frequently attract substantial mark allocation. For 
instance in 2001, 12.5% of the total marks in the examination were allocated to drawing 
graphs or interpreting them. The investigation of graphing is relevant also to jurisdictions 
beyond Western Australia. Calls on slope are common in university entrance physics 
examinations, for instance, in the Victorian Certificate of Education, Advanced Placement 
in the United States and A-Levels in the United Kingdom; and data transformation appears 
in the A-Level examinations. 
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Interpretative Framework 

Definition of the Inquiry in Terms of Situated Views of Learning 

From a situated viewpoint, inscriptions, including graphs, function as boundary objects 
(Roth & McGinn, 1998) in the discourses of people from different communities. As such, 
they can mediate translation of talk in mathematics classrooms and talk in physics 
classrooms. In discussing a graph in physics, students might realise that approaches to 
graphing in mathematics are relevant, and vice-versa. Transfer is another construct which 
is aligned with the translation. From a situated viewpoint, transfer requires that the social 
practices (in a broad sense) which are called upon in a problem situation be recognised 
from other task settings (Cobb & Bowers, 1999). 

However, students do not necessarily translate or transfer practices between subjects. 
Furthermore, my initial premises in the investigation were that graphs are treated in 
different ways in school mathematics and school physics so that possibilities for translation 
and transfer are exceeded; and sometimes the different ways are inconsistent so that it is 
inevitable many students wallow in a sea of confusion. 

Research Method 

Cobb and Bowers (1999) distinguish that, from a situated viewpoint, the unit of 
analysis can be the individual in the social setting or group practices. The focus in the 
inquiry reported here is graphing practices that students, as a group, needed to bring to bear 
in the Physics TEE. I discerned these practices from working through the physics 
examinations for 1989-2001 and by comparing my solutions against the examiners' 
solutions. My over-riding task was to identify how changes in the TEE Physics syllabus in 
1994 were reflected in the examinations, according to a range of question attributes. The 
analysis below relates to the 1994-2001 examinations and to graphing. 

Thus, the analysis does not address approaches to graphing enacted by students but 
approaches that would have yielded them successful solutions. Furthermore, a key aspect 
of the inquiry was how the graphing approaches for the Physics TEE varied from those 
taught in mathematics and I founded the comparison on my recent twelve years experience 
of teaching upper-secondary mathematics in Westem Australia. 

Situated Perspectives on the Nature of Learning and Graphing 

Wenger (1998) theorises learning and acting within communities of practice and 
highlights two key aspects: participation and reification. "Participation refers to a process 
of taking part" and "the term reification means .'making into a thing'" (p. 55-56). Students 
participate in graphing processes in an examination and some aspects of these processes are 
reified in the relationships that they recognise and the graphs they produce. Or, their 
processes of interpreting a given graph are, at least to some extent, reified in the 
explanations and numerical values, etc., which they write down. Moreover, participation 
produces reificationand reification influences future participation. 

Roth and McGinn (1997) provide alternative,views on participation and the artefacts 
which result. In particular, they identify graphing practices and characterise graphs. They 
cast graphs as (a) semiotic objects, where the object and the event it re-presents are 
constructed by the observer and this involves adjustment and readjustment; or graphs might 
be (b) objects that don't signify events, for instance a plot of points with given co-

269 



Forster 

ordinates. Graphs can also be (C) rhetorical devices, where they are used to present an 
argument, point to a relationship, support a claim. So, students might choose to provide a 
graph in an examination in support of an answer or as an answer, even if a graph is not 
required. Last graphs can be (d) conscription devices and enlist students in activity. 

Citing Leinhardt, Zaslavsky and Stein, Roth and McGinn (1997) put forward the view 
that physical situations and algebraic rules are afforded different emphases, in relation to 
graphs, in mathematics and science. "Mathematics educators are, depending on the 
curricular topic, interested in algebraic rules, graphs, and the movement within and 
between these spaces. Most science educators, however, are more interested in the 
relationship between graphs and situations and . . . the relation between algebraic rules 
(such as motion equations, optical equations) and situations" (pp. 92-93). 

Bowen and Roth (1998) further explore graphing in science and identify reasons for 
students' experiencing difficulty in learning to graph and with interpreting graphs, 
including lack of experience in a field and lack of specificity in teachers' narratives about 
graphs. The need for specificity arises because of students' lack of experience and, at least 
in science, "interpretations of a graph lie not in understanding the representation itself as a 
static object but rather in understanding the social actions through which a graph was 
originally constructed" (p. 86). 

Roth and McGinn (1998), citing Latour, identify other attributes of graphs and 
inscriptions, in general. They can be moved, copied, rescaled, combined, translated (into 
other inscriptions) and incorporated in different contexts. Further, Roth and Bowen (2001) 
point to two major difficulties that students experience with graphs: "slope/height 
confusions and iconic interpretation" (p. 161). They give the instance of students' judging 
relative speed of two objects on the basis of the height on distance-time graphs instead of 
on the basis of the gradients of the graphs. They identify also that (a) because graphs have 
arbitrary relations to the things they represent, students need to know the conventions of 
graphing; and (b) situations which graphs represent are inherently under-determined by the 
information that is available on the graph. 

Other Situated Views and Their Relevance to the Inquiry 

Nespor (1994) articulates a 'big picture' of networks of communities of practice and 
describes how people join communities, are mobilised along trajectories of practice within 
them, then move to other parts of the network. The context of the analysis was the passage 
of physics students through an undergraduate course during which they assumed the 
routines of physicists. Parallels can be drawn between the circumstances of the 
undergraduates and the Physics TEE students. The TEE is a rite of passage to university. 
Students must comply with the graphing practices expected by the examin~rs. So, views of 
the 'university community of physicists' as to what are appropriate practices in graphing 
underpin the practices called on in the Physics TEE: the examination panel comprises two 
university representatives and one teacher. Furthermore, past examination papers and 
examiners' solutions provide the best guide to what might be required, for the syllabus 
makes only brief mention of graphing. It specifies: "students should be able to ... present 
and interpret experimental data in graphical and tabular form" (Curriculum Council, 2000, 
p. 125); "practical work is intended to ... promote the development of practical skills, 
including ... recording, analysis and graphing of data" (p. 128). As well, four types of 
graphs are listed: displacement/time and displacement/distance (or position) for progressive 
waves; displacement-distance graphs to illustrate standing (stationary) waves; and the 
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stress/strain curves for typical brittle and ductile materials. 
Another facet of students' graphing is the technologies that they have at their disposal 

and these, too, originate in sources outside school physics. Technologies, including tools, 
change how people go about an activity (Wenger, 1998). The tools Physics TEE students 
have which structure their graphing include, since 1998, non-CAS (computer algebra 
system) graphics calculator. Examiners' responses to the use of the calculators in the 
Physics TEE are quoted in the analysis. 

Analysis 

A question taken from the year 2001 Physics TEE (Curriculum Council, 2001) illustrates 
the call on gradient and the use of transformed data: 

Geraldine was investigating the speed of waves along stretch strings. She generated these waves by 
plucking a 0.760 m length of guitar string. She knew the speed was given by 

v=JF 
where T is the tension in the string and p, is the mass per unit length. She plotted her results in the 

graph as shown [see Figure 1]. 
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Figure 1. Graph included in the examination question. 

(a) (i) Why did Geraldine plot'; against T and not just v against T? 
(ii) What are the units of f.1. 

(b) Use the graph to detennine the best experimental value of f.1 for this string. Show your working 

clearly. 
Parts (c) and (d) followed. They did not require use of the graph so are not included. 

The official solutions in the examiners' report showed the following: 

(a) (i) This makes the graph a straight line. (ii)!l = ... the units of !l are kg m-I 

(b) Slope = (45000 - 15000) -:- (210 -75) 

Since v 2 = (1/ J.l) T , slope = 11 J.l = 3000/135, from which J.l = 4.50 gm-I. [3000 is in error and 

should be 30000, giving f.1 = 4.50 x 109 m-I] 

In each of the years 1994-200 I there has been a question in the Physics TEE of this type-
asking for calculations based on a graph of transformed data. Topics and specification vary. 
For instance, besides the text of the question, in 1994 the equation s = X + {7: 12rm} t 2 was 
given, data for s (distance) and t (time) were tabulated and the parameters T, r and m were 
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defined. Students were asked to use the data to draw a straight line, calculate T from the 
gradient, and calculate X, the y intercept. In 1995 the topic was sound waves with 
frequency f in a tube length I, the length to produce a standing wave. The equation 
1= (v/4)(1/ f)-e was given and the parameters v and e were defined. Students were to 
transform I, f data given in a table, in order to plot a straight line; then, determine the 
parameters v and e using the gradient and y intercept. 

Transformations Required and Comparison with Transformations in Mathematics 

The examples illustrate that in some questions data was already transformed and 
plotted (the 2001 question), and in other questions students needed to decide what 
transformation was required (see the 1994 and 1995 questions). Two types of 
transformation have been requested in the period 1994-2001: squaring in 1994, 1996, 1997 
and 2001, and taking the reciprocal in 1995 and 1999. 

In Applicable Mathematics (in Western Australia), which the majority of Physics TEE 
students study, students are expected to be able to transform data in exponential 
relationship into log-linear form and to plot and interpret log-linear graphs (Curriculum 
Council, 2000). As well, they would encounter adding a constant to co-ordinate values and 
multiplying co-ordinate values by a constant as an introduction to the effects of 'change of 
origin' and 'change of scale' on summary statistics. Transformations of function equations, 
y = j(x) to y = 2 fix) etc., and function graphs are included, but the processes bear little 
resemblance to those required in the above physics questions. They constitute movement 
within and between the algebraic and graphical spaces that Roth and McGinn (1997) 
identify, whereas in the above examples movement was between the physical situation and 
numerical, graphical and algebraic objectification of it. 

So, in regard to the transformation of data in the above type of physics questions, there 
is minimal overlap with transformations in Applicable Mathematics. There was opportunity 
for overlap until 1993 with the log-linear transformation of exponential relationships, 
which relate to nuclear decay in physics. But questions about radioactive decay, at least 
from 1989-1993, relied on raw, untransformed data. Radioactive decay is not now in the 
Physics TEE course. 

Line of Best Fit 

Instructions and the official solutions for the Physics TEE indicate that students are 
expected to hand draw lines of best fit. As well, fitting the line by eye seems expected 
because marks are not allocated for specific points on the line and because 'latitude' is 
allowed in values students read from the graph (e.g., Examiners' report, 1999). 

In Applicable Mathematics, lines of best fit or least squares regression lines might be 
introduced through hand methods and mean values are used to position the line. But, in my 
experience, from 1994-1997 determination of linear regression lines would be passed to a 
scientific calculator and, since 1998, to a graphics calculator. Both types of calculator 
produce the gradient and y intercept and, if a hand drawn graph is needed, it is drawn using 
these values or by retrieving points on the line from the calculators. 

Moreover, students are expected to use their calculators in the Applicable Mathematics 
TEE to calculate the line before plotting it by hand (e.g., in 1997). Sometimes the graphical 
form of the line is not required and only the algebraic form is called for (e.g., in 1998). The 
graph produced on a graphics calculator can be relied on, for example, to identify outliers. 
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Students are expected, as well, to use their calculators for exponential regression, with raw 
(untransformed) data (e.g., in 1999). 

Only one examiners' report in physics for the period 1994-2001 has acknowledged 
students could use their calculators for lines of best fit or, more particularly, use them to 
obtain the x intercept and gradient of a line after it had been drawn: "The wording of the 
question included an 'otherwise' to specifically permit the use of a statistical calculator to 
obtain both the intercept and gradient of the line of regression. Unfortunately this was 
frequently interpreted as pick any two points to obtain the gradient, throwing away the 
benefits of drawing a best straight line in the first place" (Examiners' report, 1996). 
However, the wording "From the graph or otherwise :fmd ... " (bolding included) didn't 
give any strong hint to use the technology; and students might not have recognised to use 
their calculators because the format of previous examination questions didn't invite the 
use. In another instance, an examiner's comment suggested he/she didn't realise the 
technology might be used for gradient: "Many did not show how they found the gradient in 
part b) but obtained the answer anyway" (Examiners' report, 2000). 

So, it is not necessarily the case that the presence of a technology alters significantly 
how people go about an activity. Moreover, changes in assessment are fundamental to how 
students adopt new technologies in a subject (Berger, 1998). Following this line of 
argument, because the responses to the use of calculators in mathematics and physics have 
differed in tertiary entrance examinations, it is likely that classroom graphing practices are 
different, at least for the line of best fit. Also, the terminology 'line of best fit' 
predominates in the Physics TEE and 'least squares regression line' predominates in the 
Applicable Mathematics TEE; and the object associated with the 'line' in physics is likely 
to be a graph, while the reification of 'line' in mathematics is frequently an algebraic 
equation. All these factors contribute to disjuncture between the two subjects, to the 
possible detriment of learning, for connections between subject domains are known to 
contribute to learning being meaningful (Hiebert & Carpenter, 1992). 

Furthermore, data and graphs are commonly transformed by scientists in the field (e.g., 
Roth, Hawryshyn & Haimberger, 2001) and this is only practical via the use of computer
technologies. On the other hand, some dispute that student understanding of graphs and 
graphing is enhanced by the use of computers (Berg & Smith, 1994). 

Gradient 

Having hand-drawn the line of best fit, solutions in the official TEE reports indicate 
that physics students are to read the co-ordinates of two points on the line and calculate 
gradient using rise/run. This approach is also widely used in mathematics, although with 
data analysis at upper-secondary level the gradient is commonly retrieved from a calculator, 
possibly leading to deskilling in regards the hand method. The y intercept is also retrieved 
from the calculator. In addition, the graphics calculator provides the equation for the line so 
that students don't need to formulate it. 

Furthermore, calculations which follow finding the gradient differ in the two subjects. 
Physics TEE questions usually ask for values for parameters that make up the gradient 
(e.g., value of rwhere the gradient was r /(2rm), in 1994). In Applicable Mathematics, 
once the gradient and intercept have been determined, typically questions ask students to 
predict values for the dependent variable for given values of the independent variable (e.g., 
predict s given t, in relation to the 1994 question); and, in the instance of log-linear 
equations, the task is to change them to exponential form. 
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Examiners' comments indicate that, in physics, deducing values of parameters from the 
gradient is a point at which difficulties occur. For instance: "Candidates ... are still not 
comfortable with calculating quantities from the gradients of graphs" (Examiners' report, 
1999). The parameters often are associated with properties of the physical setup. However, 
the straight-lines produced by transformed data bear minimal if any physical resemblance 
to the setup. In other words, they grossly under-determine it. So, in 1994, the graph of 
distance s against t2 did not indicate visually that the rate of change of distance increased 
over time, and did not signify visually anything about T, the torque applied to the wheels 
of a car, which students were asked to determine. 

One purpose of manipulating artefacts of an activity is to reveal features of the concrete 
situation (Hershkowitz, Schwarz & Dreyfus, 2001; Roth et aI., 2001) but this regularly has 
not been the case with lines of fit in the Physics TEE questions. Instead of features on the 
graphs being able to be linked clearly with characteristics of a phenomenon, plotting 
transformed data has been a technology for producing straight lines, leading to the 
computation of gradient and y intercept. The abstract nature of the exercise explains 
students'difficulties. 

Multiple parameters arguably also exacerbate the difficulties: students' mean scores 
were 33% for the1994 question (5 parameters): 44% in 1995 (2 parameters) and 55% in 
2001 (1 parameter). Another aspect is the variables are not consistently shown in the same 
font (regular or italics) in the questions and neither are the parameters (e.g., v and e, in 
1995), which could be another source of confusion for students. Another inconsistency is 
the way the y intercept is treated. In 2001 (see above) the equation of the line of best fit 
matching the gradient given in the solutions was v 2 = (30000/135) T - 5000 / 3. So, in saying 

the relationship was v 2 = Cl / ).1) T , the y intercept '-5000/3' was ignored. In contrast, in the 
1995 question the y intercept had significance in relation to the physical situation that the 
line of best fit was representing. How to treat the constant term is potentially another 
source of confusion for students. 

Concluding Discussion 

In regard to graphing in the Physics TEE, the issues of transformation of data, line of 
best fit and gradient have been touched upon. The practice of transforming data is 
encountered in Applicable Mathematics, but there has been no intersection between the 
specific transformations that are included in the syllabus for that subject and the ones 
encountered in the Physics TEE for the period 1994-2001. Moreover, the terminology 'line 
of best', the processes of the production of the line, its reified form and actions upon its 
gradient have been identified as differing from those in Applicable Mathematics. 

The differences limit the scope for transfer of graphing practices from mathematics into 
solving physics problems of the type that have been discussed. One reason for the 
differences is utilisation of scientific calculators then graphics calculators in Applicable 
Mathematics and minimal recognition of them for fitting lines by examiners of the Physics 
TEE. So, the graph, rather than being a boundary object and site for translation of practices 
between school mathematics and school physics, stands as an obj ect marking disjuncture 
between the subjects. 

The analysis highlights that inclusion of technologies can compound lack of connection 
between subjects and might burden students in that they are called on to produce hand 
methods in one subject and technology-based methods in another. An implication is the 
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need for dialogue between communities in the network of communities participating in 
education, in particular, in relation to practices expected of students as they attempt the rite 
of passage from one community to another and when technologies are introduced. 

There is not room in this short paper to discuss to any great extent other aspects of 
graphing in the Physics TEE. However, there are domains of overlap with graphing in 
mathematics. For instance, in the year 2000 Physics TEE students were asked to estimate 
acceleration and distance from a velocity-time graph. Most Physics TEE students would 
have encountered drawing a tangent to the curve and estimating area under it in Year 11 
Introductory Calculus. The mean score for the population was 58%. So, it is not that 
students will be able to graph in physics if they can transfer practices from mathematics, 
but that transfer between subjects is desirable, and the significance of the inquiry in this 
paper is identification of an area where more overlap is possible. 
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